PHYSICAL REVIEW E

VOLUME 53, NUMBER 3

MARCH 1996

Mean-field nematic—smectic-A transition in a random polymer network
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Liquid-crystal elastomers present a rich combination of effects associated with orientational
symmetry breaking and the underlying rubber elasticity. In this work we focus on the effect of
the network on the nematic—smectic-A transition, exploring the additional translational symmetry
breaking in these elastomers. We incorporate the crosslinks as a random field in a microscopic
picture, thus expressing the degree to which the smectic order is locally frozen with respect to the
network. We predict a modification of the IV A transition, notably that it can be treated at the mean-
field level (type-I system), due to the coupling with elastic degrees of freedom. There is a shift in
the transition temperature T'v 4, a suppression of the Halperin-Lubensky-Ma effect (thus recovering
the mean-field continuous transition to the smectic state), and a new tricritical point, depending on
the conditions of network formation. When the nematic phase possesses “soft elasticity,” the NA
transition becomes of first order due to the coupling with soft phonons in the network. We also
discuss the microscopic origin of the phenomenological long-wavelength coupling between smectic

phase and elastic strain.

PACS number(s): 64.70.Md, 61.30.Cz, 61.41.+¢, 64.60.Cn

I. INTRODUCTION

Randomly crosslinked networks of polymer liquid-
crystal (LCP) materials (liquid-crystalline elastomers
and gels) have been a subject of substantial experimental
and theoretical activity in recent years. A newcomer to
this area can find out about the synthesis of side-chain
and main-chain systems, characteristic physical effects,
and concepts related to the nematic state in review ar-
ticles [1,2]. Three major factors determine the behavior
of these remarkable materials: liquid-crystalline symme-
try breaking; rubber elasticity coupled to the resulting
anisotropy, producing a highly mobile principal axis; and,
finally, randomly placed (and sometimes randomly ori-
ented) network crosslinks. Random disorder introduced
by these crosslinks encourages elastomers formed in the
isotropic state to cool into polydomains, i.e., highly non-
uniform textures of their liquid-crystalline phases. If the
network is formed in the presence of an external field,
or in a uniform monodomain low-temperature phase, the
resulting elastomer remains macroscopically uniform.

Smectic elastomers (Refs. [3-5] represent a few re-
cent examples) comprise liquid-crystalline polymers
crosslinked into a network which contains liquid-
crystalline groups ordered into a one-dimensional density
wave, or a smectic state. One may consider either main-
chain or, more commonly, side-chain LCP’s. The smectic
order is typically obtained by forming the network in a
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smectic state (e.g., by crosslinking at temperatures be-
low the nematic—smectic-A, or N A, transition tempera-
ture T2, in the melt). It can also be obtained by cool-
ing a sample that has been prepared in the nematic state
through the transition temperature Ty,, where we expect
Tya < TY,. The N A transition in networks is expected to
be qualitatively very different from the same transition
in melts because of the presence of elastic strain degrees
of freedom and the local effects of random crosslinks.

In the conventional N A transition, the degrees of free-
dom are the smectic order parameter ¥ (r) and the di-
rector fluctuations dn. The parameter ¥ (r) describes
the departure of the mesogen center-of-mass density p(r)
from a uniform density pg, in a form of a single wave-
length modulation [6,7]

— _1_ iqo'r }
p(r) = po {1 + 7 [(r)e +cclp.
The nematic state is parametrized by the director 7,
which indicates the axis of preferential alignment of the
mesogenic groups, and é7 indicates the fluctuations of
this axis. While the N A transition should be continuous
according to symmetry arguments, director fluctuations
may change this picture. Halperin, Lubensky, and Ma
[8] argued that the coupling to the fluctuating “gauge”
field dn should induce a first-order transition in type-
I smectics (and the analogous superconducting system).
In type-I smectics the characteristic length for penetra-
tion of the director twist into the ordered smectic state
is much smaller than the correlation length for the smec-
tic order parameter, so that director fluctuations may
be treated at a mean-field level. Type-II smectics and
superconductors, in which the gauge field fluctuations
are correlated on length scales comparable to or larger
than that of the order parameter ¥ (r), require a more
sophisticated analysis. The beliefs about the nature of

(1.1)
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this transition have varied over the years. A renormal-
ization group e expansion [8] yielded no fixed point for
physical order parameters, suggesting that the transition
is weakly first order. However, duality arguments com-
bined with Monte Carlo calculations on a lattice [9] pre-
dicted a continuous transition in the universality class of
the inverted three-dimensional (3D) XY transition (that
is, the amplitude ratios are inverted); experiments have
generally yielded a continuous transition of the nonin-
verted 3D XY class [10-12] (but see [13]). Toner [14]
has argued, on the basis of a dislocation-melting theory,
that the transition should be continuous; Andereck and
Patton [15] have calculated critical exponents within self-
consistent perturbation theory; and Radzihovsky [16] has
performed a similar calculation for the analogous type-II
superconducting transition, demonstrating the existence
of a fixed point not found in the € expansion of [8].

While our understanding of the N A transition could
be incomplete, the nature of the smectic state is well
understood. The smectic one-dimensional density wave,
of wave number g, suffers the Landau-Peierls instability
and the system exhibits quasi-long-ranged order (with
an algebraic decay of density correlations at long dis-
tances) [17,18]. The source of this instability is the Gold-
stone modes corresponding to the arbitrary phase of the
smectic density wave, whose long-wavelength free energy
is given by the Landau-Peierls elastic energy of a one-
dimensional solid [19]. In three dimensions this energy
yields algebraic decay of correlations in the ordered state,
analogous to systems with broken continuous symmetry
in two dimensions.

In contrast to a liquid-crystalline melt, a liquid-
crystalline elastomer has an additional set of long-
wavelength degrees of freedom: the elastic deformation
v(r), defined by the local network displacement, r —»
r + v(r). Smectic order couples to the elasticity through
the crosslinks, and this coupling is manifested in two ef-
fects:

(A) Crosslinks pin the smectic phase and break transla-
tional invariance. The mesogens are either incorporated
into the polymer backbone (main-chain LCP’s) or teth-
ered to the network (side-chain LCP’s), and the stretch-
ing energy for relative translations between elastic dis-
placements of the crosslinks v,(r) along the direction of
the smectic density wave and the layer displacement u(r)
can be written phenomenologically as [20]

2F; = A /dsr[vz(r) —u(r)]?. (1.2)

This energy is defined on length scales of the order of or
longer than the characteristic mesh size and, most im-
portantly, it is present for uniform relative translations.
This coupling restores the Bragg peaks associated with
smectic order [20]. In Sec. II we argue that this term is
in fact only a metastable term, and the relative displace-
ment v,(r) — u(r) may be relaxed by layer hopping [21]
with a characteristic relaxation time.

(B) The preferential reduction of mesogen density
around a crosslink due to, e.g., the steric exclusion of
the mesogen leads us (see Sec. II) to model the crosslinks
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by a local random field which adjusts the smectic phase:

Frr = v / & c(r)[ob(r)] cos{go[z — u(r) + v.(r)]}, (1.3)

where ¢(r) is the local crosslink concentration.

The smectic elastomer thus contains four contributions
to the continuum free energy in addition to the smectic
and nematic free energies associated with the NA tran-
sition in liquids:

(i) The elastic free energy of a uniaxial solid [22],
written in terms of the symmetric elastic strain e,g =
3(Vavs+Vgua). This contribution describes the phonon
field (incompressible, in most elastomers) in the rubbery
network. It couples to the relevant variables of the NA
transition through the following effects: (ii) Eq. (1.2),
the term penalizing relative shifts in the smectic phase
variable u(r) and the phonon displacement parallel to it,
v,(r); (iii) rubber-nematic couplings [23], penalizing rel-
ative rotations of the elastic strain = 3(V xv) and the
nematic director, w = 7 x d7; and (iv) the random field
term, Eq. (1.3), describing the effect of crosslinks on the
phase of the smectic order parameter.

In this work we consider the microscopic origin of
Eq. (1.2) and treat the random field in Eq. (1.3) by the
replica formalism [24], with the following results [embod-
ied in Egs. (4.6)] for the mean-field theory of the NA
transition in the network:

(1) Near the putative continuous NA transition
Eq. (1.2) may be ignored, since it is primarily a dynamic
effect. At low enough temperatures (when the charac-
teristic time scale becomes essentially infinite) this term
must be considered.

(2) At the mean-field level nematic director fluctua-
tions no longer induce the Halperin-Lubensky-Ma (HLM)
first-order smectic phase transition: they acquire a mass
which reduces their effect on the N A transition. The
existence of this mass in fact makes the mean-field treat-
ment (and the associated type-I assumption) essentially
exact.

(3) However, in the special case where the nematic
elastomer possesses soft elasticity [see Eq. (3.5) below],
characteristic of spontaneously broken uniaxial symme-
try [25,26], elastic strain fluctuations [the phonons v(r)]
restore the HLM effect and the concomitant first-order
phase transition.

(4) If the nematic state is field induced rather than
spontaneous (i.e., the network has been formed to record
the broken orientational symmetry), the corresponding
network phonon modes are conventional and the type-I
N A transition should be continuous. We predict a tri-
critical point in the crossover region between these two
regimes.

(5) The effect of disorder on the VA transition is a sim-
ple renormalization of the transition temperature Tl ,.
The transition temperature increases because crosslinks
localize the smectic phase variable and encourage order
in the disordered phase. However, slightly below T , the
smectic state crosses over to a “glassy” state character-
ized by replica-symmetry breaking.

(6) We emphasize that the typical nematic or smectic
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network is most likely to be “hard,” and that the “soft”
case we discuss extensively here is, for most practical
cases, a theoretical construct which provides a framework
for understanding the implications of a smectic state cou-
pled to an underlying elastic continuum.

Our description of the N A transition in the network
is mesoscopic because we treat the smectic and director
degrees of freedom as smoothly varying fields while in-
cluding the microscopic interaction of the crosslinks with
the smectic order parameter. The calculation in this pa-
per sets up the proper coarse-grained model with which
to investigate the effects of disorder on the smectic net-
work, which we discuss briefly here and in more detail
in a forthcoming work. The coarse-grained nematic and
smectic fields are defined on a length f1,c of the order
of a correlation length for liquid-crystalline fluctuations,
while the elastic strain field is coarse grained on lengths
down to the mesh size £, in the network, which may be
larger than {pc. These different length scales must be
kept in mind throughout.

This paper is organized as follows: in Sec. IT we present
a more detailed discussion of the two primary effects of
the network-smectic couplings; in Sec. III we present the
model free energy for the system; in Sec. IV we sketch
the integration of the elastic strain and director fluctua-
tions and present an effective free energy for the smectic
in the presence of disorder; and we conclude in Sec. V.
Our primary results are the effective Landau energies at
the end of Sec. IV and the discussion in Sec. II about
the smectic-elastic couplings. Our goal here is to under-
stand the various terms in the Hamiltonian describing the
N A transition, and to identify the effects of disorder and
rubber elasticity on the instability to the smectic state.
We leave for the future a detailed analysis of the effects
of disorder on the low-temperature smectic state. The
Appendix contains some technical details of the replica
calculations.

II. SMECTIC-ELASTIC COUPLINGS
A. Random field

In this section we justify the random field coupling,
Eq. (1.3). This interaction represents the pinning of
the smectic phase to network inhomogeneities, which we
represent by a random distribution of crosslinks. Let
us focus on side-chain LCP’s, Fig. 1, since these con-
stitute the most commonly synthesized liquid-crystalline
elastomers. The three constituents of the elastomer are
flexible backbone monomers, crosslink groups, and meso-
genic side groups attached to the backbone with flex-
ible spacers. In elastomers (as opposed to tough and
brittle densely crosslinked resins) the volume fraction of
crosslinks is much smaller than that of the backbone and
mesogenic groups, typically less than a percent of the
aggregate. Hence we treat the environment of the meso-
gens as a uniform mesogen-backbone mixture with in-
terspersed crosslink groups. It is reasonable to expect a
steric repulsion between the mesogen and the crosslink
which is enhanced relative to the steric repulsion be-
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FIG. 1. Sketch of mesogenic groups in a smectic elastomer.

tween the backbone and the mesogen, simply because
four chains come together at the crosslink. The presence
of a Flory-x parameter between the mesogen and back-
bone groups contributes a similar effect. While there
will also be an interaction with the local nematic order,
since the mesogens may adopt an alignment dictated by
the crosslink, we concentrate in this work on the effects
of disorder on a smectic phase appearing out of a uni-
form conventional nematic state. Hence we model the
crosslinks by a local random field which induces smectic
order and fixes the smectic phase, leading to Eq. (1.3).
The corresponding energy contribution for each crosslink
in the smectic potential is

Frp = ZWW)(Rz‘)I cos{go[z; — w(Ri)]} , (2.1)

where R,; is the position of the ¢th crosslink. The cou-
pling constant y can be estimated on the basis of Fig. 1.
We shall assume that the crosslinking point localizes the
positions of ¢ monomers (with ¢ the crosslink functional-
ity). The barrier for such an object to “tunnel” through
a smectic layer is a molecular characteristic of the mate-
rial describing the degree of miscibility of backbone and
the mesogenic side groups, and is roughly of order ¢y,
where x is the the Flory-x parameter between mesogens
and backbone, which includes both steric and energetic
interactions.

Introducing the continuum crosslink density c(r) =
> 6(r — R;), so that under an elastic distortion R; —
R; + v they distort by ¢(r) — ¢(r — v), we can trans-
form (2.1) to collective variables. After changing vari-
ables r' = r — v(r) we obtain

Fre = / d c(x) [r + v(r)]]

x cos{qo [z — u(r) + v, (r)]}. (2.2)

[Changing variables in the argument of u(r) introduces
higher-order gradient corrections which are irrelevant in
a mean-field treatment.]

Rather than working with the discrete crosslink posi-
tions, we represent the crosslink concentration ¢(r) by a
Gaussian probability distribution [27]:
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1 3, c(r)?
P[c]ocexp{ 2/dT2NI} , (2.3)
where N, is the number of crosslinks per unit vol-
ume of the system. For this random distribution of
crosslinks the characteristic moments are (¢(r)) = N,
and (c(r)c(r')) = Nyo(r —r').

One should note, at this point, that a different situ-
ation emerges for a network formed in a deep uniform
smectic phase: the polymer backbone in such a system is
highly constrained between the smectic layers and, there-
fore, the crosslink distribution (2.3) has a positionally
modulated kernel. This possibility will have a profound
effect on the phase ordering in the smectic phase, but
is not relevant for the N A transition description which
concerns us here. Also, in a physical system crosslinks
fluctuate about their mean positions [28], which broadens
the kernel of Eq. (2.3) into a Gaussian distribution with
a width (in real space) proportional to the extent of the
typical crosslink fluctuation. We ignore such fluctuation
effects for now.

B. Translational invariance

The second effect of the network on the smectic phase
is due to stretching the polymer backbone. This leads
to a free energy cost for uniformly displacing the smec-
tic phase relative to the elastic displacement, given by
Eq. (1.2) [20]. Whereas the contribution of the preced-
ing subsection acts only at the crosslink position, the
stretching effect influences the smectic phase all along
the strand between crosslinks, and is coarse grained at
the mesh size or larger. To understand this in detail we
first note the distinction between the smectic phase vari-
able gou and the z displacement 7); of the center of mass
of the ¢th smectic mesogen.

The phase gou is a coarse-grained variable and the dis-
placements {7;} are microscopic variables. To calculate
the position of the smectic phase from a microscopic pic-
ture one must, in principle, average over all the positions
of the mesogens. In an equilibrium smectic liguid the
mesogens lie in a smectic potential given by, for example,
a cosine modulation [29], but are not fixed in one trough
of this potential: rather, they fluctuate back and forth
over the barriers. In a strongly ordered smectic state the
activation over the barriers is very rare, while in a weak
smectic state these fluctuations are quite common. The
“motion” of the smectic phase thus corresponds to the
average motion of the mesogens’ centers of mass.

Now consider an elastomer in a smectic state and imag-
ine displacing the smectic phase while fixing the crosslink
positions. For clarity we focus on a side-chain liquid-
crystalline network, but the argument applies to a main-
chain network as well. The displacement of the smectic
phase displaces the average positions {7;} of the meso-
genic side groups. Since these are tethered to the poly-
mer backbone, this costs roughly the entropy of displac-
ing the center of mass of a polymer chain a distance u
while keeping the end points (i.e., crosslink positions)
fixed. A simple calculation leads to an energy per chain
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of Vo, ~ kzTu?/(Na?), with N the number of monomers
of size a between crosslinks. In addition to this elastic
force, an individual mesogen experiences a force due to
the smectic potential [29]. At zero temperature this po-
tential enforces the separation of the smectic phase vari-
able and the crosslink displacement, but at finite tem-
perature this barrier may be overcome by hopping. By
hopping we mean that the mesogen flips from one smectic
trough to another, in such a way as to relax the strain.
This allows the smectic phase variable to increase with-
out bound while roughly localizing the mesogens’ centers
of mass.

Hence a time scale 7* separates liquidlike smectic be-
havior at long times from “solidlike” smectic behavior at
short times, the latter characterized by the elastic modu-
lus A. For temperatures above the nematic-smectic tran-
sition temperature 7* is extremely small and we may ig-
nore this elastic effect. However, as the network is cooled
deep into the smectic state 7* grows, and for all practical
purposes we must include this term. Since we are only
concerned with very weak smectic phases in this work,
we leave further discussion of the interesting dynamics of
a smectic network to another work.

III. THE MODEL

In this section we introduce the full free energy of the
system, and set up the replica calculation. The N A tran-
sition in a liquid is described by the Landau—de Gennes
free energy,

2P = [dF {’r|z/1(r)|2 + 181!
10, ](V 1 — igodR)p(r)|?

+g|.|az¢<r)|2}, (3.1)

where the minimal coupling (V| — igodh) satisfies rota-
tional invariance of the director and the layered system
[7]. In the high-temperature nematic phase director dis-
tortions dn are penalized by the Frank free energy,

2F;, = /d% {Kl(v-m)2
+K,(h-V x60)? + K3(ﬁxVx5ﬁ)2}. (3.2)

In this work we use the one-constant approximation,
K, = K, = K3 = K. The elastic energy of an underly-
ing uniaxial solid can be written in many ways [22], and
we choose the representation through the traceless strain
tensor €,g = €qp — %Tr[e}(sag, in order to deal explicitly
with the case of a nearly incompressible network:

2Fe1 = /ds’f‘ {Clgzz + 202522':[‘1‘[6] —+ Cg ('I‘I‘[G])2
+2C4(2, + 282, + &2,)

+4CH(E, + e;»}, (3.3)



2448

where the Z axis is chosen along the nematic director. In
the isotropic case, the elastic moduli {C;} transform to
the Lamé coefficients as C; = 2u, C2 =0, C3 = A+ %p,
and C4y = Cs = pu. In most cases we take the limit
Cs — oo, since A/p ~ 10* — 10° in a typical rubber.
The rubber shear moduli scale as p ~ N kzT, where
N, ~ €72 is the number of crosslinks per unit volume.

The rubber-nematic free energy penalizing relative ro-
tations of the director w = fi X én and elastic strain
Q = 1(V x v) can be written as [23,26]

2F, ., = /df"r {bl (2 — w)xn)?

+2byfr-e- (2 — w)xﬁ}, (3.4)
where b; and b, are proportional to, respectively, the ne-
matic order parameter Q2 and Q, multiplied by N k;T.
A positive coupling b, corresponds to a network which fa-
vors parallel alignment between mesogen and backbone
orientations, while a negative b, favors perpendicular
alignment.

For the special case of nematic elastomers which pos-
sess an arbitrary choice of the nematic axis (because of
a spontaneously broken symmetry of a network, formed
in the isotropic state) rather than a “quenched” axis
of alignment dictated by, for example, an applied field
during crosslinking or crosslinking in the nematic state,
the relationship Cs — b%/(4b;) = 0 holds [25,26] and
the phonons described by €,, and €,, are “soft” [i.e.,
the corresponding phonons have fluctuation spectrum
(lu(g)]?) ~ ¢~* instead of the conventional ¢~2 behav-
ior]. The deviation of the network from this curious soft

J

2Frepl = kT
B —

a,b=1

x cos{qo [z — u®(r) + v (r)]} cos{go[z — u’(r) + v2(r)]}.

Note that u fluctuations are implicitly included in the
measure for ¥ fluctuations. From here on we consider a
uniform 1 for the purposes of understanding the mean-
field behavior of the transition, and as such will not con-
sider fluctuations of its phase.

We next coarse grain the system by averaging over the
period of the smectic modulation g5 * along the layer nor-
mal z. This procedure requires that both the “mean free
path” between crosslinks £, ~ N:c_l/2 and typical length
scale of the relative translations u(r) — v,(r) be large
compared to the layer spacing 27rq0_1. We find

Frepr= =T 3 [t [p210*] cos{anlu® (r) ~ o*(e)]},

a,b=1

(3.9)
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case is thus parametrized by

Cs— -2 =A

& =5 (3.5)

The presence or absence of these modes plays an essential
role in describing the N A transition. While a perfect soft
nematic elastomer (A = 0) is unlikely to be found in typ-
ical experiments due to random stresses in the nematic
state or a predetermined alignment direction during net-
work formation, we include the soft case to present a
complete theoretical picture.

The partition function for the system is then given by

Z= / DyDvDSiH

X exp — Fy, +Ffr+Fe1+Fn_u+FRF}.

1
Pl
(3.6)

To find the effects of crosslinks on the VA transition in
the network and, eventually, on the nature of the smectic
state, we average over the disorder associated with these
crosslinks. To compute quantities such as the quenched
disorder-averaged free energy and correlation functions
we use the replica trick [24] to write the free energy of
the system as

1—(2")p

F/kal = —(InZ)p = lim ——'F,

(3.7)
introducing n replicas of the system. The disorder av-
erage over the distribution P[c], Eq. (2.3), couples the
replicas together into the term Fi.p:

_7N. Z /dgr 9% [r + v*(r)]|[¥°[r + v®(r)]]

(3.8)

where I' = v2N,, /(2ksT). The free energy of the system
is now given by Eq. (3.7), with n replicated copies of the
partition function Eq. (3.6), with Frr replaced by Fiepi.
Note that the similar form of the replica Hamiltonian,
containing a translationally invariant cosine of fluctuat-
ing field (v® —v%), appears in the problem of random flux
pinning in superconductors [30].

IV. MEAN-FIELD PHASE BEHAVIOR

To see the effect of the crosslinks on the N A transition
in the network we integrate out the strain and direc-
tor fluctuations and examine the stability of the result-
ing effective theory for a uniform |¢|. This procedure is
valid when the penetration length A for director twist into
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the smectic is much smaller than the smectic coherence
length ¢ = (g1 /7)/? (this situation is often referred to
as the type-I smectic A, by analogy with superconduc-
tors) [8]. For an elastic network, nematic fluctuations
have a “mass” m =~ g2g, |¥|?> + b1A/Cs, where the first
term is the mass due to smectic fluctuations and the sec-
ond term, ~ N k5T, is due to the coupling to the elastic
network. As the transition is approached |1|? ~ 3/7 and
the twist penetration length is given by A = (K/m)/2,
so that

A K 1/2
£ (Tq%gi +9LA) '

This Ginzburg parameter vanishes as the critical point is
approached (7 — 0), so that the condition for a type-I
smectic (A/{ <« 1) is trivially satisfied and the mean-
field treatment here is exact. (Note that for the perfect
soft system, A = 0, the system may or may not be type
II, as with ordinary smectics.) Elastic fluctuations enter
the theory at Gaussian level and may be integrated out
at a mean-field level. A self-consistent check on the ne-
glect of these fluctuations is to ensure that the smectic
correlation length at the fluctuation-induced first-order
transition is of the order of or larger than both the mesh
size (to satisfy the coarse-graining procedure) and the
twist penetration length.

To perform the calculations we choose a convenient
geometry (cf. [6]). We decompose the displacement into

(4.1)

v = (vy,v1,0s), (4.2)

where v, is parallel to the nematic director; v, is normal
to the director and belongs to the plane defined by the
director and the wave vector q in Fourier space; and v,
is in the direction defined by q x fi. Similarly, dh =
(671¢, 671 ). Integrating out the director fluctuations is
straightforward since they are not involved in the random
coupling, and we find

(2"p = /ﬁ Dy Dv*
- {Z [F2 () + P (v, 9]

+Frepl}~

X exp —

(4.3)

The effective smectic free energy density is renormalized
to

Fi(¥)
%

= 371%1* + ;8lv[*

+kBT/ 111[1)1 + Do () + Kqﬂ . (4.4)
q

where V is the system volume and we have used the one-
constant approximation for the bare Frank elastic con-

stants. Here and below, fq = [d®q/(27)%. The param-

eter Dy = |9|?g g2 is proportional to the square of the
smectic order parameter, and the logarithm in Eq. (4.4)
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is the determinant of the quadratic form from integrat-
ing the director fluctuations. The factor Dy(¢) in this
term gives rise to the Halperin-Lubensky-Ma effect in a
mean-field type-1 system. That is, when the director is
not coupled to the network (b; = 0), director fluctua-
tions are massless and the ¢ integration renormalizes the
transition temperature T’ ,, and yields a negative cubic
term which induces a first-order transition [8]. However,
massive director fluctuations (b; # 0) imply only even
powers of [1] in the expansion of the integral, destroying
the HLM effect.

Eliminating én also renormalizes the rubber elasticity,
yielding Fel, which is a quadratic form in the phonon
variable v. Together with Fi.p1, the effective energy gov-
erning the elastic degrees of freedom is given by

H ZFeI+Frepl

Il

—FZ /d3r|1/)a||1/1b| cos qo(v® — v?), (4.5)
a,b

where the kernel matrix M(q,v) in F is given in the
Appendix.

The next step is to integrate out the phonon vari-
able v(r) and extract the effective free energy as a func-
tion only of ¥. Since H is non-Gaussian this is a non-
trivial step. We perform this integration by applying the
Gaussian variational method (GVM) as introduced by
Mézard and Parisi [31] for random systems with transla-
tionally invariant (in replica space) Hamiltonians, like
our cos(v® — v%). In performing this integration we
assume replica symmetry for the phonon fluctuations,
which holds for small enough % and is thus justified for
an analysis of a continuous transition. We also assume
replica symmetry in the value of 1) which extremizes the
partition function, so that we present below an effective
free energy of ¢ which does not involve replicas and which
we believe describes the N A transition in a random net-
work.

The integration of v is sketched in the Appendix, and
yields two distinct theories, depending on whether or not
the system exhibits “soft” elasticity (A = 0). The effec-
tive free energies are:

Fy _ { Lrolpl? = Xolwl* + Lot (A =0) wo
v s7alY)® + 18aly|* (A #0), :

which can also be presented as a single crossover expres-
sion covering both cases:

Fy

& (4.7)

= 3T (A7 + A4, %) + §B(A) [

The free energies above comprise one of the primary re-
sults of this work. In Eq. (4.7) the coefficients 7(A)
and ,@(A) are continuous analytic functions of A, while
S\(A,w) is a nonanalytic function which gives the cubic
term for A = 0. This term is responsible for the qualita-
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tive results we find. In this work we give only the detailed
expression for the cubic crossover function A(A, ), since
this term alone determines the qualitative aspects of the
transition.

Soft nematic elastomers (A = 0). The renormalized
coefficient 79 has the form 7o(T — Tw.), with the new
transition temperature shifted by the effects of rubber
elasticity and random pinning (3.9). Besides this obvious
effect, the new feature of this soft regime is the cubic term
which restores the HLM effect. This term is given by

NN A
0 127 K ’

and is precisely the cubic term given by Halperin, Luben-

(4.8)

J
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sky, and Ma [8]. Hence while the coupling of elasticity to
the director (or gauge) field destroys the HLM effect, the
effect is restored if the coupling preserves the set of Gold-
stone modes present in the nematic state, an intuitively
pleasing situation.

Conventional nematic elastomers (A # 0). In a net-
work formed in the nematic state there are no soft elas-
tic phonons and no Goldstone modes, and the effective
Landau-de Gennes free energy F; contains renormalized
quadratic and quartic coefficients. There are numerous
contributions to the quartic terms, but the qualitative
nature of the renormalized quartic follows from examin-
ing the behavior of the nonanalytic crossover function,
given by

- 1 4Ab? 3/2
AMAY) = ——— 2|42 1 4.
(&%) = ~ 572 [glq"w" T 16 1 (b +b2)2] (4.9)
~ 1 2 3 2 ab1 + b2 |* 9133 4Ab,
> — o [0(1,|¢| )+ 5914 N + , by < o 1 b2)? <1}, (4.10)

where the first inequality defines the validity of expand-
ing the 3/2 power, and the second inequality allows us to
simplify the results for a nearly soft system (A =~ 0).

Hence the nonanalytic term yields a negative quartic
coefficient when expanded for small |¢| at nonzero A.
For small enough A this term becomes very large and
the expansion is only relevant for extremely small |¢].
At the point where the expansion becomes invalid the
quartic term must be replaced by a cubic term, and a
tricritical point results. Alternatively, one may examine
the free energy above, Eq. (4.7), to find a tricritical point
at A, given (for small A) by examining

1
,3A,,~ﬂ—§;

9\ 1/2
<qu0> bitba (4.11)

ALK3 by

where [ is the bare quartic coefficient. The N A transi-
tion is of second (first) order for positive (negative) Ba.

Thus for small enough A the transition is expected
to be of first order. This correction is most important
in those systems which are already close to a tricriti-
cal point, 8 2 0 (typically those with a relatively small
nematic range, T,y — T4, Where T,y is the isotropic-
nematic transition temperature [29,7]). We have checked
numerically that, for a wide range of realistic elastic con-
stants, the correction to 3 ranges up to 0.1k;Tq> ~ 3,
where g. is the microscopic (large wave number) cutoff
that defines the coarse graining of the theory [7]. As
noted in the Appendix, the only effect of disorder is to
slightly increase the transition temperature, which is sen-
sible because crosslink sites locally enhance the smec-
tic order. Our effective free energy assumes a replica-
symmetric ground state. In the Appendix we note that
the replica-symmetric solution is stable for || = 0, while
in the smectic state there is a crossover at small ||
to a replica-nonsymmetric state, which in this context

refers to the effect of the smectic order on the back-
ground phonon spectrum. An analysis of the further ef-
fects of disorder on the low-temperature state is beyond
this scope of this work.

V. CONCLUSION
A. Experimental consequences

We conclude by first discussing some experimental con-
sequences and signatures of this work. The primary qual-
itative prediction concerns the order of the transition.
The preparation of networks of varying degrees of “soft-
ness” (which may be controlled by, for example, chang-
ing the degree of order which is frozen into the smectic
state) allows for tests of the predicted tricritical behavior
between first- and second-order nematic—smectic-A tran-
sitions, which may be probed by, for example, specific
heat experiments.

It would also be interesting to test the crossover to a
“glassy” phase characterized by replica-symmetry break-
ing. X-ray scattering to probe the smectic density wave
should yield this information, in the form of a crossover
from a Landau-Peierls form to a structure factor with
temperature-independent logarithmic correlations, simi-
lar to the vortex glass considered by Korshunov [32] and
Giamarchi and Le Doussal [33].

A cornerstone of our treatment involves the coupling
between the smectic phase variable and the elastic strain
in Eq. (1.2), which we have asserted to be a dynamic ef-
fect. A signature of this would be a characteristic time
scale 7* associated with hopping of mesogens over the
smectic barrier. In strong smectic phases this time scale
should be essentially infinite so that we may use Eq. (1.2),
but it should be present in weak smectics and emerge in
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measurements of the complex rheological response func-
tion.

B. Critique and outlook

In this work we have examined the onset of the
nematic—smectic- A transition in a smectic elastomer, and
delineated two types of behavior [summarized in the free
energies, Egs. (4.6)]. Soft nematic elastomers should dis-
play a first-order transition, due to the HLM effect in-
duced by the spectrum of Goldstone modes which are a
combination of director and strain fluctuations. Conven-
tional “hard” elastomers, on the other hand, should have
a continuous transition, with a tricritical point as the soft
limit is approached.

In performing our calculations we have assumed the
system is in the type-I limit, so that a mean-field treat-
ment is valid. Since director fluctuations have an addi-
tional mass due to the coupling to the elastic network,
we believe this limit is safe for smectic elastomers. We
have treated disorder within the replica formalism and
found that, at the level of the onset of the transition, the
only effect is to stabilize the smectic state. A preliminary
analysis suggests that the effects of disorder are certainly
important deep in the smectic state.

Hence a natural extension of this work concerns the na-
ture of the low-temperature phase. The effects of disorder
are twofold: (1) Translational symmetry is broken and
the smectic phase is locally pinned to the disorder, which
should destroy the Landau-Peierls transition in favor of
true long-range order of the smectic density wave; and (2)
disorder can be strong enough to destroy the long-range
order itself. Which, if either, of these effects wins out is
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suggestion that the coupling proposed previously to de-
scribe the energy penalty for sliding the smectic phase
relative to the crosslinks, Eq. (1.2), is actually present
only when one considers sufficiently short time scales
(which, practically, may still be of the order of years).
This leads to predictions of rheological effects, as well as
possible glassy phases to “freeze” this term in, which we
leave for the future. This interesting suggestion is based
on the notion that the smectic layers are actually “phan-
tom” layers, and their motion need not correspond with
center-of-mass motion of the mesogens.
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APPENDIX: INTEGRATION
OF FLUCTUATION MODES

In this appendix we sketch the steps to integrate the
network phonon field v(r) from Eq. (4.3). Recall first our
coordinate system v = (v,,v,,v:), as given in Eq. (4.2).
We begin with the energy governing the elastic degrees
of freedom, Eq. (4.5), after integrating out the director
degrees of freedom:

H= Z/ v*(a)-M(q)-

v*(—q)

an interesting question, analogous to the effects of disor- - Z /d37'|¢a||¢b| cos go 2-(v* — v?), (A1)
der on other systems with continuous symmetry, such as ab
the XY model or flux lattices in superconductors.
A second, more speculative, result of our work is the  where the matrix M (q,%?) is given by
J
) C:2q29n(q) + Ci1q1 + Kaug®q} 2:9.(C1: + Ko q?) 0
@ 4:91(C1. + Ka1q?) C114%9n(q) + C524? + Ka2q’q2 0 ;
0 0 Caq’ 9.(q) + C5242 + Kazq’q?
(A2)
where g,,(g) = b1 + Do(¥) + Kq? and the new renormalized elastic moduli are
Ci, = Cs+ %C1 - %C'z + 1,#0(74, C,, = Cs+ %Cl + %C’z + %C’4,
Ci: = (b1 + Do)y + (b —b3)/4, a1 = A+ (b —b2)?/(4by), (A3)

A+ (by +b2)%/(4b1),
Cél = Abl +D0a1,

Q
©
I

a; = C;— 'Cl + lCz - 204 + Cs,
Céz = Ab1+D0a2.

Recall that A = Cs — b2/(4b,) is the deviation from an ideal soft nematic elastomer [25,26].
We first rescale v, pulling out the determinant of M(q), which leaves the following replica partition function:

-

1 a
5;k,ﬂ"/qlndetM(qn/J )+Fw(¢)},

(A4)
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where

e_Fw(if))/kBT:/H’Dw“exp—ﬁ %Z/]wa(q
a B a

Note that the matrix M(q) becomes a differential op-
erator in real space, with the square root defined with
reference to the operator in Fourier space.

To calculate F, (1) we use the Gaussian variational
method [27,31]. Since this method is well known and is
essentially the Hartree approximation, we sketch the pro-
cedure and refer the reader to Refs. [27,30,31] for further
discussion. We begin by assuming a trial Hamiltonian,

Hy = %%Lwa(q)'GQi(q)'wb(—Q)- (A6)

The free energy for the w integration satisfies the in-
equality

FwSFvarEFt+<H_Ht>t’ (A7)
where the average is taken with the trial Hamiltonian

H:. The variational free energy Fy,., which must then
be minimized over the matrix G, (q), is

Frar = —k‘;T [/q (TrlnG — Tr G) + n]
TS fariueitien { kT [ Bu@},
(A8)
where
Bas(a) = 2m(q)- [Ga,a(q) + Gop(a)
~2G (@) %m(a). (A9)

Here we have defined z,,(q) = M~'/2(q)-2(q).

Next we calculate the self-consistency conditions
0Fya:/6Gqp = 0. For a replica-symmetric ansatz, G, =
a9dq + a1, the self-consistency conditions yield ag = 1
and

as = ~22,(q) m(a) T4 g2 / |y, (A10)

4 = exp {—q§ kBT/lM;:(q)} ~ (A11)

In obtaining this relation we have assumed that the smec-
tic instability is satisfactorily described by a replica-
symmetric ansatz |¢*| = |¢|. Henceforth we discard free
energy terms of higher than linear order than in n, which
vanish in the n — 0 limit. Moreover, we expect that
in the low-temperature phase (|*|)p is replica symmet-
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)2 — FZ/d3r|¢“||1/)b|cosqo [5:M 72 (we — w)]
a,b

(A5)

ric, and glassy behavior manifests itself in broken replica
symmetry of the phase variable [i.e., the layer spacing
u(r)] as in, for example, the XY model in a random field
(34,30,33].

Next we identify the free energy using Eq. (3.7), and
examine the stability of the nematic phase against uni-
form smectic order. Hence we examine the stability of
Fy = kT lim, ,o(1 — (2")p)/n. The final result is
T = b0l + 36100 + kT [ nga(a)

q

+%kBT/lndet M (q,%) - T'|4? (1 - 7). (A12)

There are four ¢ integrals to perform: one (I;) from
Ing,, (¢), which arises from director fluctuations and from
the logarithm of the prefactor of the determinant of M.
These are identical, and exhibit a partial cancellation (a
factor of 1 from the director fluctuations and a factor of
—3/2 from the determinant of M); two more integrals (I»
and I3) emerge from Indet M, and one from (I;) M},
which enters in the exponential in 4.

I, may be performed exactly and expanded to yield
even powers of ¢. We take I> to be the integral of the
logarithm of the single diagonal of M involving C4 (that
is, My). This has a contribution nonanalytic in ¥ for
A — 0, since in this case C{, ~ [4|? and the integrand in
the q integral is singular as g, — 0. This yields the cubic
term A(A, ), as well as many terms even in 1. I3 is then
the logarithm of the determinant of the remaining 2 x 2
sector of M. This is also nonanalytic in ¥ at A = 0, but
yields terms of order |4|®,%In|t|, etc., which we ignore
compared to the effect of the 13 contribution (these terms
can be shown to lead to subdominant terms for small A).

The last integral, appearing in 4 = ef*, must be han-
dled with care. We are interested in expanding this in-
tegral for small ¢ for both the soft (A = 0) and hard
(A # 0) cases. For A9 —» 0 the integrand is singular
as g, — 0. This singularity yields a logarithmic contri-
bution to the integral, so we write

4 = e~ %ksT [[M(a) _ |¢,,7le‘-[10+f0(¢)], (A13)
where I is a constant and fo(%) is an analytic function of
1. Hence the term involving 4 in Eq. (A12) contributes a
term in the energy proportional to 227, multiplied by
an exponentially small prefactor. We find 1 to be essen-
tially the Caillé exponent [17], n = ¢2ksT+/b:/K/(87C),
where C is a combination of rubber elastic constants.
Since 77 may be of order 0.5-2.0, we ignore this term
compared to the cubic term. If n is sufficiently small
we may include this term in a Landau expansion, but
we expect the exponentially small prefactor to render it
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negligible. In the case where A is nonzero the integral is
analytic and yields even powers of 1. Therefore the only
qualitative effect of disorder is to increase the transition
temperature.

The final step of the calculation is to ensure stability of
the replica-symmetric ansatz for the v integral. This is
done by examining the replicon mode, identified for the
GVM as [31]

A= 1Tl RakaTy [ (M) (A14)
q

where A is the eigenvalue of the most unstable fluctua-
tion mode about the replica-symmetric solution given by
(ao,a1). We note that this is actually the eigenvalue of
the fluctuation mode of the N, — oo limit version of the
theory, where N, is the number of “color” components
of the field v, in which limit the GVM (or Hartree) ap-
proximation becomes the exact saddle point integral [31].
While X is calculated in this limit, it may or may not ap-
ply to the physical case N, = 1, but hopefully yields
intuition about the correct behavior.

Since A = 1 in the high-temperature phase (because
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|| = 0), the replica-symmetric solution is stable as far as
understanding the onset of the smectic transition. Analy-
sis reveals an L divergence in [ (M_.')?, which indicates
a critical temperature (in the smectic state) at which
the disorder is relevant and we must consider replica-
nonsymmetric states. Here L is the system dimension.
Ignoring numerical factors, this “glass” transition tem-
perature T* is given by the temperature very slightly
below the N A transition at which the order parameter
attains the value ¥*, given by

. 2 PR
v~ (sagz) (A15)
where C ~ kzTN, is a combination of rubber elastic
constants. Since ¥* is inversely proportional to the sys-
tem dimension L, the window within which the replica-
symmetric solution holds is expected to be very small.
Thus, for understanding the properties of realistic sys-
tems, one must examine the properties of the disordered
low-temperature state within the framework of replica-
symmetry breaking.
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